

WESTERN AUSTRALIA

Soil Amelioration Research

AAAC Meeting, 11 April 2019

Soil Wetters 1.

- 2. **Soil Compaction**
- Soil Acidity 3.
- **Deep Soil Mixing and Inversion** 4.
- Amelioration Economics ROSA 5.
- New Research Projects 6.

7. Discussion

WESTERN AUSTRALIA

Banded wetters for repellent soils

Steve Davies, Glenn McDonald & Geoff Anderson, DPIRD

Banded Wetters

- Annual application
- Cost \$8-21/ha

Summary 10-years Banded Soil Wetter Research Trials

Comparing Systems on Forest Gravel

WESTERN AUSTRALIA

Banded Wetter Summary

- 1. Most responsive and reliable crop responses on forest gravel soils
- 2. Most benefit for cereals with marginal moisture at seeding
- 3. Variable responses on repellent sands paired or nearrow sowing more reliable establishment benefits
- 4. On responsive soils wetters are effective for either on furrow or near seed placement
- 5. On forest gravels fresh annual application of wetters residual value of is small
- 6. Higher rates and new products may improve outcomes but cost more so ROI could still be an issue

Acknowledgement: DAW00244 Soil Water Repellence

WESTERN AUSTRALIA

Minimising the impact of compaction on crop yield DAW00243

Moora; Yield % of Nil

Munglinup; Yield % of Nil

Depth vs Breakout

Department of Primary Industries and Regional Development

GOVERNMENT OF WESTERN AUSTRALIA

	Area breakout (m²)	Total cost (\$/ha)	Average Yield (t/ha)	Return (\$/ha)	Ripping benefit (\$/ha)	Cost/m ² :Return	Year 1 Return On Investment
Nil	0.00		3.02	882			
Terraland	0.91	66.4	3.64	997	115	0.63	0.73
Ausplow	1.09	27.6	3.57	1 015	133	0.19	3.84
Imants 58 Series	1.56	90.3	3.82	1 026	144	0.40	0.59
Hydramax	1.21	65.3	3.73	1 023	141	0.38	1.16

GOVERNMENT OF WESTERN AUSTRALIA

ww.ctfcalculator.org

GOVERNMENT OF WESTERN AUSTRALIA

Updates in soil acidity Research

Dr Gaus Azam Soil Scientist, CPSS DPIRD

Progress in managing soil acidity in WA

Researchers, consultants & growers made good progress:

But subsurface soil is still a big issue:

➢ 50% of subsurface <pH_{Ca} 4.8

Target high: a small trial in Kalannie

- > To clear up confusion (from some of us)
- A blue sky research (soil pH profile engineering)

Department of

GOVERNMENT OF

WESTERN AUSTRALIA

360 degree camera

$$\blacktriangleright$$
 Control = ~20 cm

GRAINS RESEARCH &

DEVELOPMENT CORPORATION

- Incorporation only = ~ 60 cm
- > Deep lime incorporation = ~65 cm + fine roots

The good old solution

Lime, re-lime, re-lime

After 23 years, up to 0.75 t/ha of wheat from surface liming

[•]Missing piece of puzzle

> Where did the lime go?

4.0 LSD(5%)=0.5 Yield (t/ha) 0.5 0 Ocm 15 cm 25 cm 2.5 2014 re-liming (t/ha) 0 3 3 3 0 0 0 0 0 1998 re-liming (t/ha) 1.5 1.5 1.5 0 0 0 0 2 4 1994 lime (t/ha)

Just re-incorporation of residual lime

> 25cm deep incorporation added 0.25 t/ha extra yield

> What if we incorporate >25cm?

Added value to old solution

> Can gypsum enhance the results we get from liming?

Lime-Gypsum Interaction and grain yield

- ≻ Lime: 12-13%
- ≻ Gypsum: 5-11%
- ➤ Combined: 23-30%

What is the mechanism?

Lime-Gypsum Interactions: improvement in soil chemistry

- Lime: Increased soil pH and hence a decreased in Al toxicity
- Gypsum: Increased the ionic strength (reduced the relative activity of AI)

Take home messages

- 1. Recurrent liming to mange the whole profile
 - improved subsoil acidity and crop yield, BUT
 - Imme stratified in top few centimetre soils,
 - deep ploughing to re-incorporate can rapidly increase subsoil pH and add extra yield.
- 2. Lime and gypsum combining strategy
 - ➤ Up to 30% yield improvement with combined application
 - Lime helped increasing pH, decreasing AI and increasing macro-nutrient uptake
 - Gypsum helped increasing ionic strength (reducing relative AI activity), provided S and increased micro-nutrient uptake
- 3. Deep incorporation of completely acidic soil profile has potential to double the grain yield and WUE.

Acknowledgements

Supporting and partner organisations

WESTERN AUSTRALIA

Department of Primary Industries and Regional Development

A group of great people

- Nixon Family
- Giacomo Betti, Jen Clausen, Paul Damon, Shahab Pathan
- Daron Malinowski & Gavin Sarre
- Shari Dougall & Bruce Thorpe
- James Fisher, Dr Jason Condon

WESTERN AUSTRALIA

Deep soil mixing and inversion

Steve Davies, Giacomo Betti, Tom Edwards, David Hall, Glenn McDonald, Craig Scanlan, DPIRD

Tim Boyes, agVivo

Soil water repellence

Mild

Moderate

Severe

Department of

Root disease?

Department of

Frost Severity

CONTROL TREATMENT

Summary 10-Years Rotary Spading Trials

Summary 10-years Soil Inversion Trials

GOVERNMENT OF

Soil Amelioration and Yield Potential

Location		Viold	% of Yield Potential					
(Soil)	Year	Pot.	Control	Ripping	Deeper Ripping	Rip + Mixing	Inversion + Rip	
Meckering (Sand over gravel)	2016 2017 2018	3.0 3.7 3.7	70 103 84	83 108 86	100 116 100	100 138 124	97 143 135	
Goomalling (Deep sand)	2017 2018	1.2 1.8	35 50	36 58	125 88	117 91	117 72	

Tiller Survival August to November 2018

advice for agriculture

Summary – Inversion and Mixing

- 1. Multiple benefits possible biotic, climatic and soil constraints
- 2. Subsequent deeper ripping often strong benefit
 - Average additional 10%, 340 kg/ha
 - Can be up to 700-900 kg/ha
- 3. Comparing inversion implements
 - Mouldboard tends to outperform one-way plough in 7 of 9 direct comparisons, average 196 kg/ha more
 - Mouldboard vs spader on average minimal difference but can vary between sites
- 4. Implementation skill and risk for mouldboard higher than some other implements

ROSA Ranking Options for Soil Amelioration

Dr Elizabeth Petersen (Liz), Senior Research Officer, DPIRD Co-authors: Jeremy Lemon and Vilaphonh Xayavong, DPIRD GRDC Project Numbres: DAW00242, DAW00244, DAW00252

Ranking Options for Soil Amelioration

- Aimed at consultants, agronomists and farmers (not research)
- Preliminary version released in December 2017
- Final version released January 2019
- Available by contacting Jeremy.Lemon@dpird.wa.gov.au

Soil constraints

- Topsoil acidity (0-10cm)
- Subsoil acidity (10-30cm)
- Soil structure decline
- Subsoil compaction
- Water repellence

Amelioration options

- Liming
- Gypsum
- Deep ripping
- Claying
- Soil mixing
- Wetting agents

- Costs and benefits accrued over 10-year time period
- Return on investment ranking based on the Benefit Cost Ratio

GOVERNMENT OF

Thank you Visit dpird.wa.gov.au

Important disclaimer

The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. © State of Western Australia 2018